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1. I n ~ o d u c f i o n  

Linear  two-level programming, a special case of multi-level programming, deals 
with optimization problems in which the constraint region is implicitly determined 
by another  optimization problem. 

The  model  can be considered as a two-person game where one of the players, 
the leader,  knows the cost function mapping of the second player, the follower, 
who may or may not know the cost function of the leader. The follower knows 
however  the strategy of the leader and takes  this into account when computing his 
own strategy. The leader can I foresee  the reactions of the follower and can 
therefore  optimize his choice of strategy. The problems associated with leader and 
the follower are often referred to as the outer  problem and the inner problem 
respectively. 

A number  of algorithms have been proposed to solve the linear two-level 
problem since the first solution technique proposed by Falk [13]. Falk studied the 
general max-min p r o b l e m - a  special case of the linear two-level problem, where 
the inner objective function is the negative of the outer  objective function. His 
algorithm is based on branch and bound and linear programming techniques. 

Bialas and Karwan [9] have shown that the solution of the problem must occur 
at an extreme point of the feasible set (obtained by all linear constraints to both 
the outer  and the inner problem). Based on this observation they proposed the 
" k  th best algorithm" that finds the optimal solution by an explicit enumeration 
scheme. The same idea has been utilized in the enumeration method by Candler 
and Townsley [12] and the B&B-algorithm by Moore  and Bard [7]. Other  
B&B-algorithms have also been developed by Judice and Faustino [19], Bard and 
Moore  [6] and Hansen et al. [15]. 

Another  common solution technique is to replace the inner problem by its 
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Karush-Kuhn-Tucker conditions and hence obtain an ordinary mathematical 
programming problem with a single objective function. Here, the difficulty occurs 
in the set of constraints-the complementary slackness conditions. Bard and Falk 
[4] used this idea and proposed (for the nonlinear two-level problem) a non- 
convex programming algorithm based on branch and bound. The method can fail 
to find the global optimal solution. Fortuny and McCarl [14] introduced 0/1- 
variables in order to take care of the complementarity slackness conditions and 
instead solve a large mixed integer programming problem. The Karush-Kuhn- 
Tucker approach has also been used by Bialas and Karwan [9] and Bialas, 
Karwan and Shaw [10] in what they call "the parametric complementarity pivot 
algorithm". 

Narula and Nwosu [23] and [24] proposed a solution procedure that solves the 
problem in three phases. In phase I it finds the reaction set (the set of possible 
optimal solutions to the inner problem) of the inner problem with respect to the 
outer problem and, if necessary, partitions the reaction set into non overlapping 
linear sets. In phase II the "subproblems" are solved while the global optimum is 
found in phase III. However, it is shown in Ben-Ayed [8] that this approach may 
fail to find the global optimum. 

Another class of solution methods tries to solve the linear two-level program- 
ming problem via multiple objective linear programming [5], [31]. Here the two 
objective functions are weighted together to give a standard linear programming 
problem. However, Wen and Hsu [32] have shown that, in general, there is no 
such relationship between bilevel and bicriteria programming problems. 

Tuy et al. [30] restated the linear two-level problem as a global optimization 
problem and a new method based on this approach have been developed. The 
most important feature of this new solution method is that it attempts to 
maximally exploit the structure of the constraints based on recent global 
optimization techniques. Recently, it has also been discovered that multilevel 
problems are actually complementarity convex optimization problems with a very 
specific structure. This seems also to be a very promising approach to this 
important class of problems. 

For the nonlinear two-level problem, Bard and Falk [4] and Bard [5] developed 
a one-dimensional search algorithm that yields a locally optimal solution. Local 
optimization methods based on nonlinear programming such as penalty or barrier 
function methods and direct gradient methods have also been used to approach 
the optimal solution smoothly, see e.g. Loridan and Morgan [22] and Kolstad and 
Lasdon [21]. Aiyoshi and Shimisu [1] made a reformulation of the problem into a 
one level optimization problem and applied a penalty function method to solve it. 
Anandalingam and White [2] presented a solution procedure for the linear 
two-level program where the duality gap of the lower problem is appended to the 
objective of the upper problem with a penalty. Judiee and Faustino [20] proposed 
a method for the linear two-level program which consists of solving a sequence of 
linear complementarity problems by using a hybrid enumeration method. 
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The computational complexity of the linear two-level problem is treated in 
Blair [11]. The paper by Ben-Ayed [8] gives a survey on the linear two-level 
problem. The recent volume on hierarchical optimization, edited by Anandaling- 
am and Friesz [3] contains papers on the whole spectrum of bilevel programs: 
linear and nonlinear, theory and algorithms as well as applications. 

The linear two-level programming problem can be formulated as 

[P] min cTx + dry  
x~O 
s.t. A i x + B~y <~ gl 

and y solves R(x),  where R(x) is the problem 

[ R ( x ) ]  min dry  
y~O 

s.t. A zx + Bzy ~ g 2 

(xCR p, y E R  q, g l E R  ma, g2ERm2). 

In an earlier paper [30] we have shown that this problem (P) is equivalent to 
the following reverse convex program 

[Q] min CrlX+dry 

s.t. AlX  + Bly<~gl 

A 2 x + Bzy ~ g2 

x, y>~O 

q~(x) >i dry  

where q~(x) is the optimal value of R(x) (q~(x) is convex). 

T By exploiting the specific structure of the reverse convex constraint q~(x) ~ d2y , a 
polyhedral annexation method was proposed in [30] which works basically in a 
space of much smaller dimension than p + q. 

In the present paper we will discuss a branch and bound algorithm for solving 
(P) based on the reduction of this problem to a quasiconcave minimization 
problem in a space of dimension 1 + rank A 2 . 

2. The Equivalent Quasiconcave Minimization Problem 

Setting 

t (c) Y , A2 B2 , c =  dl , g =  ,~ (u )= r  

we can rewrite (Q) in the form 

min{ cTu I Wu <~ g, dg(u) - h(u) >t O, u >! 0} . 

= 
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Let  u ~ be a basic optimal solution of the linear program 

min{cTu [ Wu <~ g, u I>0}. 

We can assume that ~(u  ~ - h ( u  ~ < O, otherwise u ~ would solve (P). Let  

D = { u l W u ~ g , u ~ O } ,  C = { u l ~ ( u ) - h ( u ) < ~ O } ,  

I ~ = D - u  ~ ~ = C - u  ~ 

where D is a polyhedron, assumed, for simplicity, to be nonempty and bounded. 

Fur thermore ,  the origin 0 is a vertex o f / )  and / )  C ~. 
The function q~(x) = min(d2Ty : BEY <-g2 -- A2x, Y ~ 0} is a convex function and 

we shall assume that ~p(x)< + ~  Vx. Consequently, q~(x) is continuous every- 
where,  hence ~P(u) is continuous everywhere, C is closed and 

int C = (u : ~P(u) - h(u) < 0}.  

The  general case when q~(x) may be +o0 for some x (i.e. R(x) may be infeasible), 

can be reduced to the previous one, see Appendix A. 
We can then reformulate the problem as 

[0] min(c ru :u E D\in t  ~ } .  

Since u ~ is a vertex of D and ~ (u  ~ - h(u ~ < 0, i.e. u ~ @ int C, it follows that 0 is 

a vertex of b and 

O@ {) N i n t h .  (1) 

An important  structural feature of the problem that should be exploited is the 

following property that has been established in ([30]). 

P R O P O S I T I O N  1. The convex set ~ contains the cone 

K =  {u = (x, y) lA2x<~O,d~y>~O}. 

Denote  by a i, i = 1 . . . . .  m 2 the vector of R p+q whose first p components form the 
i-th row of A 2 and whose last q components are all zero. Also, let a ~ = (0, - d 2 )  
R p+q. Without loss of generality it can be assumed that a ~ a 1, . . . ,  a m2 are linearly 
independent  (this amounts to assuming that d 2 # 0 and the rows of A 2 are linearly 
independent) .  It follows from Proposition 1 that 

C* C K* = cone(a ~ a l , .  . . , a m 2 )  (2) 

where * denotes the polar. This suggests considering the dual problem of ( 0 )  in 
the sense of [26]. As shown in the latter paper this dual problem will be a 
quasiconcave minimization problem. 
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Define a function f :  K*---> ( - %  +~] as follows: 

f(v) =inf{cru : U E D, (v, u) >! 1} (3) 

(with the usual convention inf~ = +~). 

PROPOSITION 2. The function f(v) is quasiconcave on K*. 
Proof. Let [v', v"] be any line segment in K*. For any v E [v', v"], we obviously 

have (v ,  u> ~< max{@', u>, (v", u)}, for all u, hence f(v)>-min{f(v') ,  f(v")}. [] 

Actually, the formula (3) defines a quasiconcave function over the whole space 
generated by K*. 

T H E O R E M  1. Problem (Q) is equivalent to the quasiconcave minimization 
problem 

[(QCM0] minf(v) s.t, v E ~* 

in the following sense: 
The optimal value in the two problems are equal and if 6 solves (QCM1) then the 

vector ~ E argmin{cru : u E D, (6, u) >i 1} solves (Q). 
Proof. First observe that since C is closed, convex and contains 0 it is known 

and can be checked easily that int~ = {u : vu < 1, Vv E C*}. Now if u is feasible 
to ((~) then u E 15\intC, hence vu> 1 for at least one v E C*; so u must be 
feasible to the problem defining f(v), and therefore cru >~f(v). This shows that 
the optimal value of ((~) is never less than that of (QCM1). On the other hand, if 
v E C* then any u feasible to the problem defining v must satisfy u ~ D, vu ~ 1, 
hence u)F~intC, i.e. u must be feasible to ((~). This shows that the optimal value 
of (QCM1) is never less than that of (Q). Therefore, the optimal values in the two 
problems are equal. The conclusion then follows easily. [] 

Thus, to solve (P) it suffices to solve (QCMI). 

3. Basic Properties of (QCM 1) 

The objective function f(v) and the feasible set C* in the problem (QCM1) have 
some nice properties that should be taken into account when designing an 
efficient solution method. In this section we discuss these properties. 

PROPOSITION 3. The function f(v) is lower semicontinuous. 
Proof. Let v~---~v ~ and f(v~)<-a. Then for each k there exist a u k E / 3  such 

that (v k, u k > >i 1 and f(u ~) = cru k <~ a. By taking a subsequence u~---~ u ~ ~ b such 
that (v ~ u ~ I> 1 and since b is bounded by hypothesis, it then follows that 
f ( v  ~ <_ ~ < 
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PROPOSITION 4. f (v)  = +oo if  and only if  Ov E Of)* for some 0 > 1. 
Proof. The problem in (3) has empty feasible set if and only if vTu < 1 for all 

y E D, i.e. since /)  is compact, max{vru : u E /5}  < 1. Hence the conclusion. [] 

PROPOSITION 5. The function Fo( lt ) =f(l_~~ is convex polyhedral. I f  

:= min{cru : u ~ b }  <f (v)  < +oo 

then f(Ov) <f(o)  for all 0 > 1. 
Proof. Setting 0 = ~ we can write 

Fo(A ) = f(Ov) = --cTu ~ + min{cTu : u E D, vT(u -- U ~ t> 1 -- A} 

= - c r u  ~ + min{cru : Wu <~g, vru >>- vru ~ + 1 - A, u >I 0}. (4) 

If f ( v ) <  + ~  then, since f ( 0 ) =  +~ ,  it follows from the quasiconcavity of f that 
f(Ov) < +ooV0 > 1 and by the duality theorem of linear programming, 

f (ov )  = -c u ~ 

+ s u p { - g r t  + (vru ~ + 1 - A)t 0 : - -wTt  + toO ~ c, (t, to) >I 0}. (5) 

This shows in particular that Fo(lt ) =f(Ov) is a convex polyhedral function of ,L 
Furthermore,  from linear parametric programming theory it is also known that 
this parametric program in A has a basic optimal solution (?, [0) which is optimal 
for all )t in some interval [0, 2,1) C [0, 1) (note that for A = 0 this program has a 
finite optimal value which is Fo(0 ) =f(v)) .  Hence, 

f(Ov) = --cTu ~ - g r [ +  (vTu o + 1 - A)i- 0 VA E [0, AI). (6) 

Here it is easy to see that [o > 0. Indeed, if i 0 = 0 then 

_gT-? = s u p { - g r t  : - W r t  <- c, t >I 0} = min(cru : Wu <- g, u >i 0} 

= CTU ~ + ~ , 

hence for A = 0 in (6) we get f (v)  = --cTu ~ -- g r [ =  f ,  a contradiction. 

For every v ~ K* let us define 

tr(v) = max{vru : u ~ / 5 } ,  

[] 

S inc e / )  is compact and 0 ~ / )  we always have 0 ~< o-(v) < +~.  If o'(v) = 0, t3 will 
be understood as a point at infinity in the direction v. 

C O R O L L A R Y  1. For every v with o'(v)> 0 the point ~ = - ~  belongs to the 
boundary o f  the polytope D*. The function f(Ov) ( for  fixed v) is equal to +oo in the 

v 
0 -  (7) 
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interval 0 <-0 ~ - ~  and monotonically decreases from f (6)  to ~ in the interval 
1 << 0 < +oo. I f  ~r(v) = 0 then Ov E D* and f(Ov) = +ooV0 >/0. 
Proof. Clearly, max{vru : u E / ) }  = 1 while max{Ov~u : u E [)} > 1, VO > 1. 

That  is, v G / ) *  but O v i D * ,  for any 0 > 1. Hence, v E a/)*. The rest follows 
from Proposition 3, 4 and 5. [] 

R E M A R K .  Since cru ~ is inferior to the optimal value of (Q), it is easily seen that 
the optimal value of 0 must be positive. Hence, f (v)  > O, Vv E (?*. 

Before proving the next property it is convenient to mention the following simple 
but useful fact. 

L E M M A  1. Let ~7(u) be a convex function defined as 

~?(u) = sup{ (Hu + s, t) : t E A}, 

where H is a matrix, s a vector and A an arbitrary set o f  values t. For any ft where 

~?( gt) is finite, denote by i the value such that 71( (t) = ( Hfi + s, i)  , i.e. ~ achieves the 
supremum in the problem defining ~7( fi). Then 

on(a) .  

Proof. It is easily seen that ~/(u)-  ~/(t~)/> (Ha + s, Z) - (Ht~ + s, i) = ( H ( u -  
fi), i) = (HTi,  u -  t~), hence the conclusion. [] 

Now consider any feasible solution ti = (~,)7) of (I)). Then ti E / 5  tq 0 C. The next 
property deals with the question of how to derive, from fi, a point 6 E C* with 
f (  5) <~ cr  ft. Let ti = (s y~, ~ = :f + x ~ and )7 = ~9 + yO. Since 

~o(x-) = min{d2ry : - B 2 y  >i Z 2 s  - g2, Y >~ 0} = d f ~  

it follows that 

q~(x-) = max{ (Z2~? - g2, t):  - B ~ t  <<- d2, t >i 0}. (8) 

PROPOSITION 6. Let 2 = (A~{, - d 2 ) E  R p+q, where ~ is an optimal solution o f  
the linear program in (8). Then for the vector 

2 
o - (2, a> 

T -  we have f (  g) <~ c u. 

Proof. By Lemma 1, Az~iE O~o(x--), hence (2, u - /2) = ( A  r z , x -  3~> - -  ( d  2 , y 
- ~)  <~ (~(x) - d~y) - (~o(x-) - d~y-) = q~(x-) - d~2 <~ 0 whenever ~(x) - dz~y ~< 
0. That is, (2, u)  ~< (2, ti),  Vu E ~. Here 2 # 0 because d 2 ~ 0 and since 0 E intC, 
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it follows that (2, t2 ) > 0. Thus, 6 is well defined and ( 6, u)  ~< 1, Vu E (7, while 
(O, t i ) = 1 .  But then from (3), f(O)~cTu. [] 

We close this section by the following property of C. 

P R O P O S I T I O N  7. The set C is a polyhedron which is the projection on the (x, y) 
space of  the polyhedron defined by the inequalities 

A2x + B2z<~g 2 , drz-dry<---O, z>~O. (9) 

Proof. If (x, y ) E  C, i.e. q~(x)- dry <-0, then ~o(x)< +oo and for any optimal 
solution z of the subproblem R(x) we have (9). Conversely, if for (x, y) there 
exists z satisfying (9) then z is a feasible solution to R(x), hence q~(x) ~< drz  <~ dry, 
i.e. (x, y) ~ C. Thus, C is actually the projection of the polyhedron (9) on the 

(x ,  y) space. It is known then that C itself is a polyhedron. [] 

m2 C O R O L L A R Y  2. Let v C K * ,  i.e. v = Zi=otia' with t i I>0, and denote by p(v) the 
optimal value of  the linear program 

m2 

(LP(v)) max ~ ti(ai, x - x  ~ - to(d2, y - y ~  
i = 1  

S.t. A 2x + B2z <- g2 

drz  - dTy <- 0 (10) 

z>~O 

Then v E (7* if and only if p(v) <~ 1. 
Proof. This follows, since by definition v E (7* if and only if vru <<- 1, Vu E (7. 

[] 

4. Outline of the Solution Method 

It follows from Proposition 7 that (QCMI) is actually a quasiconcave minimiza- 
tion problem with linear constraints. However ,  since these linear constraints are 
not known explicitly, we propose to solve (QCM1) by a method which combines a 
branch and bound technique with outer approximation to generate these con- 
straints as needed in the solving process. 

We start with a simplex S D (7* considered as a rough outer approximation of 
(7* and usually with a value a which is the value of f at the best feasible solution 
of (QCMI)  available (briefly, the best feasible value of f ) .  Then the first 
approximating problem for (QCM1) is 

min{f(v) : v E S} .  (11) 
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To solve this approximating problem we subdivide the space into cones and for 
each cone M we estimate a lower bound /3 (M)  ~< m in f (S  A M).  Cones M with 
/3(M) t> a are deleted and the cone M with smallest lower bound is considered 
the most promising. To M a point o5 E S N 34 is associated such that if o3 E C* 
then the outer  approximation S can be considered tight enough and we continue 
the branch and bound process for solving the approximating problem (11). But if 
O5,~ C*, then the outer approximation must be refined. We do this by adding to S 
a linear constraint that cuts off o3 without cutting off any point of C*. With the 
new polytope S', replacing the old one, we then continue the branch and bound 
process. 

Thus, the method is a branch and bound procedure for solving the approximat- 
ing problem (11) in which the approximating polytope S is made tighter and 
tighter as the algorithm proceeds. At  the beginning we have a value a which is 
the best feasible value available. Since at each iteration new feasible solutions 
may be generated,  we update the current best feasible value a whenever possible. 
The algorithm terminates when the current best value a is sufficiently near to the 
smallest lower b o u n d / 3 ( M )  or there is evidence that the problem is infeasible. 

The four basic operations in the just outlined method are 
�9 Branching 
�9 Bounding 
�9 Tightening the approximating polytope S 
�9 Updating the incumbent 

These are discussed in more detail below. 

4.1. BRANCHING 

To simplify the notation we will drop the subscript 2 in m 2 and write m instead of 
m 2. Recall that we assume that the vectors a i (i = 0, 1 , . . .  ,m)  are linearly 
independent .  Then the cone K*, which contains C*, has exactly m + 1 edges, 
each passing through one a i. Branching will be performed by subdividing K* into 
subcones, where by cone we will always understand a cone with vertex at 0 and 
exactly rn + 1 edges. The subdivision proceeds as follows. 

Let  M 0 := K* and T O = [a ~ al , . . .  ,am]. For each v E k* denote by ~-(v) the 
intersection of T o with the ray through v. Given a cone M =  
cone(v ~ v l , . . . ,  v m) C M 0 with v ie  To, a subdivision of M is defined by the 
selection of a point w E M not lying on any edge of M (so that ~r(w) ~ v i, Vi). 
This point w can be represented in a unique way in the form w = E hi vi with 
h i />0 ( i =  0 , . . .  ,m).  Let  J =  { j :  hj >0} ,  [J[ t> 2. Then the partition of M in 
this subdivision consists of all the cones Mj, ]E J, such that M j =  
cone(v~ ,v j-l, ~r(w), v J+l,... ,v m) (so Tj = ~-(Mj) is the simplex whose 

vertex set is obtained from that of M by replacing v J with ~r(w)). We say that 
the cone M is split upon w. 
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When  w is the midpoint of a longest edge T = [v ~ v 1, . . .  , v m] the subdivision is 
called bisection. A subdivision rule (process) is called exhaustive if for any infinite 
nested sequence of cones M k = cone(v k~ vkX, . . . , v kin) (v ki E To) such that M k  + 1 

is obtained from M k via a subdivision obeying this rule, we always have 

diam[v ~~ I) kl . . . .  , D km] =max Iv ki - O~J[--~ O(k---> -boo) 
i<] 

i.e. the cone M k shrinks to a ray as k---> +~.  The simplest exhaustive rule is the 
bisection rule. For the convergence of the procedure,  however,  the bisection rule 
is rather slow, therefore more efficient exhaustive subdivision rules have been 
proposed,  see [16] and [28] for more details. 

4.2 .  B O U N D I N G  

At a given iteration we have an incumbent 0 with f ( 6 ) =  a and, in addition, a 
polytope S D(?* which is the current approximation of C*. Let  M =  
cone@ ~ v l , . . .  ,vm)(vi E To) be any newly generated cone. Using definition (7) 
we can compute the points 0i (i = 0, 1 . . . .  ,m).  Let  0 i =  vi/o.i, where o- i = o-(vi) 
and let the polytope S be defined by the system Ev <- r. 

Consider the linear program 

(LP(S, M)) 
m 

max ~ h i 
i = 0  

s.t. ~ )tiEl) i ~ r 
i = 0  

A ~ O .  

(12) 

L e t / z ( M )  be the optimal value of this program. Define 

v i = l x ( M ) ~  i ,  v ( M ) = m i n { f ( v i ) : i = 0 , 1 , . . . , m } .  (13) 

P R O P O S I T I O N  8. S n M is entirely contained in the simplex [~o, v , . . . ,  [~m]. / f  
~ ( M )  < 1 then f ( v )  = + %  Vv E S n M,  while fo r  I~(M) >! 1 we have 

v(M) <~ min{f(v) : v E S n M} ~< min{f(v) : v E ~* n M } .  

Proof .  Since any point v E M is of the form v = E hi ~i with h i i> 0, and since 
/ z ( M ) = m a x { r , h  i :Ehi t l  i ~ S N M } ,  it is easily seen that S A M C { v =  

Ai 0i : A 1> 0, S h i ~</z(M)} = [v ~ v , . . . ,  ~m]. The second assertion follows 
from the quasiconcavity of f,  which implies that the minimum of f over a simplex 
is achieved at a vertex, and the fact that i f / z (M)  < 1 then f ( v  i) = +oo, Vi. 
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Thus, if/~(M) < 1 then the cone M can be discarded from further consideration. 
I f /x(M) >/1 we define 

/3(M0) = v(M0), /3(M) = max{/3(M/a), u(M)},  M r  0 (14) 

where Mfa denotes the father cone of M, then /3(M) yields a lower bound for 
min{f(v) :v E S N M} which has the monotonicity property, /3(M) ~</3(M') if 
M'CM.  

REMARK.  Based on Proposition 5 and Corollary it is easy to determine, for 
each i, the value 0i such that f(O~v i) = a. Clearly, 0~ I> v~/~rg we take tl i =  Oy. It 
should be, however, that the determination of the value 0/may be more expensive 
than that of o-~. 

4.3. TIGHTENING THE APPROXIMATING POLYTOPE S 

Let l f lEargmin{~(M):ME~},  where ~ is the set of cones that remain for 
further exploration at a given iteration. Let o3 = E Xivi/oi, where (X0 , . . . ,  Xm) is a 
basic optimal solution of LP(S, lVl). (We will refer to o3 as a basic optimal solution 
of LP(S, l~'l).) 

By solving LP(O3) (see Proposition 7 and Corollary 2) we obtain p = p(o3). If 
p ~< 1 then, by Corollary 2, o3 E C* and we let the set S be unchanged. Otherwise, 
if O3~ C*, let (s 37, z-) be a basic optimal solution of LP(O3), so that the vector 
~i = (s y-) satisfies ( o3, iT) = p > 1. Then the linear inequality 

(E,v) <~ l (15) 

will be violated by o3 but will still be satisfied by all v E C*. Indeed, since (s 37, z-) 
is feasible to (10) it follows that t i= (s hence (t2, v)~<1, VvE C*. 
Therefore, by adding (15) to S we define a polytope smaller than S but still 
containing ~*. 

Since ( t~ ,o3 /p)= l  and (ff, v)~<l ,  V v C C * ,  we see that (15) defines a 
supporting hyperplane to C* at the point o3/p. It can be proved, see, e.g. Tuy 
[27], that (15) is even one of the defining constraints for the polyhedron C* (but 
we shall not need this fact for the justification of the algorithm). 

4.4. UPDATING THE INCUMBENT 

At each iteration, for every newly generated point v, we compute p(v) by solving 
LP(v), see (10). Then r = v/p(v) is the intersection of the ray through v with 
0C*, since p(v) = max{(v, u) :u E C} implies max{(r u) :u E C} = 1. There- 
fore, the incumbent can be updated by considering f(r for the newly 
generated points v. Note that always p(v) > 0 because v ~ 0 and 0 E intC. 
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5. The Algorithm 

If a feasible solution ti to *(0) is available we can compute the corresponding 
feasible solution O to (QCM1), see Proposition 6, and set a =f(O). Otherwise, let 
a = +~(O = ~t). Take a simplex S D C* (or any polytope S which is known to 
contain an optimal solution of (QCM1)). Set M o = c o n e ( a ~  ,am), At = 
{M0}. Select a subdivision rule which is exhaustive. 

Step 1 : For every M = cone(v ~ v l , . . . ,  v m) E At with v i E T O = [a ~ a I . . . . .  a m] 
compute t3 i = oi/tri, i = O, 1 . . . . .  m and solve LP(S ,M)  to obtain its optimal 
value/~(M) and a basic optimal solution to(M). I f /z(M) >I 1 then also compute 
/3(M) by formulas (13) (14). 

Step 2: Delete any cone M with / z (M)< 1 or /3(5'/)/> a. Let ~ be the set of 
remaining cones. If ~ = 0  then terminate. If O exists it solves (QCM1), 
otherwise, if O= 0 the problem is infeasible. 

Step 3: Select 21) E argmin{18(M) : M E ~t }. Let 03 = to(M).. Compute p(03), by 
solving LP(03). Update 0 and a if the point ~(03) = 03/p(03) is better than O. If 
0(03)> 1, which means that 03flfC*, then let (2, 17, z-) be a basic optimal 
solution of LP(03) and reset S*--S fq {v : (E, v )  <<- 1}, where t7 = (2, y-). 

Step 4: Split 2t) according to the chosen subdivision rule. Let 3 ~ be the partition 
of 21). Reset At §  ~ and go back to Step 1. 

REMARKS.  (i) The initial simplex S can be constructed as in the method 
proposed in [30], where a simplex P inscribed in C is taken and S = P*. If a 
polytope is available that is known to contain an optimal solution, then it can be 
taken as S. 

(ii) In the implementation it is convenient to take a ~ a 1 . . . .  , a m as a basis of 
the space (of dimension rn + 1) spanned by K*. Then a point v @ K* is given by 
its coordinates to, t l , . . . ,  t m with respect to this basis, and a constraint like (15) is 
written as 

ti(a i, l~) <~ 1. 
i=0 

Also note that the linear programs for computing f (v)  at different v differ only 
by the last constraint, while for given S and a the programs LP(S, M), for two 
"brother"  cones M and M', differ only by one v i (i.e. their duals differ only by 
one constraint). Moreover, all the programs LP(v) have the same constraint set. 
These properties should be exploited for saving computational efforts in solving 
all these problems. 

(iii) To avoid having to deal with point at infinity, like vi/ai when 0 5 = 0, the 
following "bounded version" of the algorithm can be used: 

Take a very large positive number L and set O = L(v/Iv])  for O = v/~r with 
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o-= 0. This amounts to replacing/5", which may be unbounded, by the convex 
compact set 

G = 15" n {v: Iol ~ L)  

It is easily seen that the bounded version is nothing but the above algorithm 
applied to problem (QCM1)' that is obtained from (QCMa) by redefining 
f (v)  = - ~  at points v outside the ball of radius L around 0. Obviously, these 
two problems are equivalent. 

(iv) Exhaustive subdivision rules that are more efficient than the bisection rule 
are generally complicated, see [16]. Computational experiments suggest that in 
practice it will suffice to use the following rule: 

Split M (in step 4) upon the point 03 = to()~), as long as the algorithm runs 
normally. Use the bisection rule when the algorithm seems to slow down. 

6. Convergence 

Denote by Sk, Mk,  tog , . . ,  the approximating polytope S, the cone M and the 
point 03 = to(M) at iteration k. Also let 0 k and a k be the incumbent and its value 
when entering iteration k. 

PROPOSITION 9. For sufficiently large k we have tok E OC* (so that S k, = S~, 
Vk '  > k).  

Proof. Each new constraint of the form (15) added to the current approximat- 
ing polytope defines a supporting hyperplane to the polytope ~* at some 
boundary point of ~* (see Section 3, III). Furthermore, this supporting hy- 
perplane cuts off the current point tog which is feasible to all the previous 
constraints. Therefore, the supporting hyperplanes corresponding to different 
constraints are all distinct and touch C* at all distinct points. Since C* is a 
polytope, (Proposition 7) the number of these supporting hyperplanes must be 
finite. Hence, for large enough k we must have coke C*, and consequently, 

k 
to E OC* since always to g E OS k and S k D C*. [] 

THEOREM 2. I f  the algorithm is infinite, then it generates at least one infinite 
nested sequence o f  cones Mk, such that Mk,+l is a son of  M~ . For any such 
sequence o f  cones the corresponding sequence of  points to k, will converge to a 
global optimal solution of  (QCMI). 

Proof. If the algorithm is infinite then the tree describing the branching process 
has at least one infinite path, which corresponds to an infinite nested sequence 
Mk, such that Mkr+l is a son of Mkr. Consider any such sequence. To simplify the 
notation, we will drop the subscript r and write k instead of k,. 

Let M k = cone(v k~ v ka , . . . , O kin) with O k i  = [a ~ a s, . . . , a m ] .  By exhaustiveness 



256 HOANG TUY ET AL. 

of the subdivision process the simplex [v k~ v k l , . . .  , V kin] will shrink to a point v* 
as k---> +~,  i.e. 

ki 1),(k___>_[_oo ) i = 0 , 1 , . .  ,m (17) D ~ , . . 

By Proposition 9 we may assume tokE O~*, Vk. Since, C* is compact we may 
also assume that 

k O.)* to --~ ~ OC*. (18) 

Now denote by s g and tb k the points where the ray through to k meets the simplex 
[v k~ v k l , . . . , v  kin] and the boundary Of)* and /5", respectively (the term 
"simplex" should be understood as "generalized simplex" if certain vertices are at 
infinity). Since /x(Mk)/> 1, s k always exists and 

s k E [0; to k] C C*. (19) 

We contend that the ray through v* meets the boundary O/)* of D* at a unique 
point. Indeed, if this ray is entirely contained in D* then [vki[---~ +0% Vi and 
hence (since s k belongs to the simplex [v k~ v k l , . . . ,  okra]), [sk[ ~ +oo, contradict- 
ing (19) in view of the boundedness of C*. Therefore, this ray meets 0/)*. Since, 
on the other hand, for any v E K* = M0, Ov E 1)* for all small enough 0 > 0 (i.e. 
0 is an interior point of /) in the relative topology of K*; see Corollary 1) it 
follows from the convexity o f / ) *  that the intersection is a unique point. 

Thus, the ray through v* meets 0/)* at a unique point 0*. But then from (17) it 
follows that 

oki--->O*(i=O, 1 , . . . , m ) ,  &k--->O*, sk--->O *. 

Furthermore, since tok  ~ IS k,  ~ok] while s k and s  both tend to 0*, we must have 

0* = w * .  (20) 

Also clearly, 

IO.) k -- sk i  

/z(Mk) = 1 + iskl ~ 1, 

hence 

,~ki \ ^ki _.~ v = IX(Mk)V to*(i = O, 1 . . . . .  m) .  

Now, from the definition of fl(Mk) and assuming without loss of generality that 
� 9  ~ ~ k 0  

min{ f (vk i ) : i=O,  1, . ,m}=f (~k~  we have [3(Mk)~f(o ), hence, by the 
~ k 0  

lower semicontinuity of f (Proposition 3), as v ---> to*: 
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lim [3(Mk) ~>lim f(v k~ >.-- f(to *) . 

But /3(Mk) = min{/3(M) :M ~ ~k}, so that /3(Mk) ~< min{f(v) : v E C*}. There- 
fore, f ( to*)<-min{ f (v ) :v~*}  and since to*EC* this implies that to* is a 
global optimal solution of (QCM1). [] 

Note that even though tokE 0~* it may not belong to 0/5" and so f(tok) may be 
equal to +~. 

T H E O R E M  3. If the algorithm is infinite, then any cluster point of the sequence 6 k 
yields a global optimal solution of (QCM 0. 

Proof. Let 0 " =  lira{0 k} for some subsequence {O k, k U A}. Among the cones 
that are sons of M 0 at least one must contain infinitely many points O h, k E A. 
This cone must be split at some iteration (otherwise it could not contain infinitely 
many 6~), i.e. it must be Mkl for some k~. Analogously, among the cones sons of 
M~I at least one, say Mkz, contains infinitely many O k, k ~ A. Continuing this way 
we find that there exists an infinitely nested sequence {Mkr}, containing each 
infinitely many O h, k ~ A. To simplify the notation, let us henceforth write k 
instead of k r . As in the previous proof, all the points 6 ~i, to g will tend to a 
common limit t3* = to* which is the unique intersection point of the ray though v* 
with 0/)*. Since, however, f(O k) < +0% we have O k ~ 0/~*. Hence, 

Ok---~ ~3" = to*, i.e. 6" = to*, 

and by the previous Theorem, 0* is a global optimal solution of (QCM1). [] 

Clearly, by an argument analogous to the one used at the beginning of the proof 
of Theorem 3, one can prove that any cluster point of the sequence {tok} is the 
limit of a subsequence corresponding to an infinite nested sequence of cones 
{Mk, }. Therefore, any cluster point of the sequence {to g} also yields a global 
optimal solution. 

Thus, either the algorithm terminates after finitely many steps with a global 
optimal solution or by an evidence that the problem is infeasible, or it generates 
infinite sequences of points {Ok}, {tok} and any cluster point of these sequences 
provides a global optimal solution. 

7. Illustrative Example 

To illustrate how the algorithm works, we consider the following small example: 

(P) rain 3 x 1 + 2 X z + y l + y 2  

s.t. Xl+xa+yl+y2<~4 
XI,X2~0 
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where  y solves 

(R(x)) min 4 y l + y  2 

s.t. 3X 1 -{- 5X 2 "~ 6y I + 2y 2 I> 15 

Ya, Y2 >10. 

Preliminary transformations 
D is a p o l y h e d r o n  

D = {x I , x2 ,  Yl, Y2 ~ 0 : X l  '~x2 + Y l  +Y2 ~4, 3Xl -t- 5X 2 -{- 6y 1 -t" 222 ~ 15} 

while C is the p ro jec t ion  on the (x, y)  space of  the  po lyhed ron  (Propos i t ion  7): 

{X1, X2, Yl,  Y2' Z I '  Z2 : 3Xl "1- 5X2 -It- 621 + 2Z 2 >I 15, 4z I + Z 2 ~ 421 

+ Y2, Z1, Z2 ~ O} . 

By el iminat ing z 1 , z 2 above  we get  

C = {Xl, x2, Yl, Y2 : 3xl + 5X2 + 621 -1- 222 ~ 15,  421 "t" Y2 ~> 0} (21) 

(in the  genera l  case it is not  necessary  to have  the  explicit inequali t ies  defining 

C) .  L e t  u = (Xl, x2, Yl, Y2) and c --- (3, 2, 1, 1). A basic op t imal  solut ion of  the  
l inear  p r o g r a m  associa ted with (P) ,  i.e. of  the p r o g r a m  

min{cru : u E D} 

is U ~ = (0, 0, 5,  0) and the  sets ~ = (C - u ~ a n d / )  = (D - u ~ can be  defined.  We 
are  n o w  able  to t r ans fo rm the original p r o b l e m  into ((~) ( m i n { c r u : u E  
D\int  C)).  T h e  final t r ans fo rmat ion  leading to the quas iconcave  min imiza t ion  

p r o b l e m  ( Q C M I )  (min f(v) s.t. v E C*) ,  is carr ied out  below.  T h e  set C* = (C - 
u~ * is con ta ined  in the cone K* gene ra t ed  by the  two vectors  

a ~ = (0, 0, - 4 ,  - 1 ) ,  a I = ( - - 3 ,  - - 5 ,  0 ,  0 ) .  (22) 

T a k i n g  a ~ a 1 as a basis of  the space spanned  by  K*,  we r ep resen t  each  point  
v E K* by  a vec tor  t(v) = (t o t l )  E R 2 such that  v = to a~ + tl al + 

Since cTuO=5 and for  t(o)= (to,t1) we have  vTu = --(4y I + y 2 ) t 0 - - ( 3 X  1 + 

5x2)t 1 while v Tu ~  --10t 0, we can define 

f(v) = --cTu ~ + inf{cru  : u ~ D,  (v ,  u - u ~ 1> 1} 

= - 5  + inf{3xl + 2x2 + Yl + Y2 : s.t. (20) and 

- (4Yl + Y2 - 10)to - (3xl + 5x2)t1 ~> 1} . (23) 

This  comple t e s  the  r e fo rmula t ion  into (QCM1) .  Also,  
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Fig. 1. Problem (QCM1) in the example.  

t o 

o'(v)  = - v r u  ~ + m a x { v r u  : u ~ D } 

= 10t 0 + m a x { - ( 4 y  I + y z ) t o  - (3x 1 + 5X2)t I :S.t. (20)}  (24) 

p ( v )  = - - v T u  ~ + m a x { v r u  :u ~ C} 

= lOt o + m a x { - ( 4 y  I + y 2 ) t o  - (3x I + 5X2)/' 1 : 

3X 1 + 5X 2 "~ 6y I + 2y 2 I> 15, 4y 1 + YZ >~ 0 } .  (25) 

Initialization 
T o  construct the initial s implex S approximating ~*  from outside,  we  observe that 
the point  s = - 0 . 6 a  ~ - 0.6a I = (1.8,  3, 2.4, 0.6)  belongs  to ~ (see (21)) ,  therefore 

the cone  P = s + K is contained in C and its polar S O = P* contains C*. We thus 

take S O = P * ,  i.e. 

S o = {(to, t l )  : t o + t I ~< 0 . 6 ,  t o 1> O, t 1 ~> O} . (26) 
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L e t M  o = K * = { t : t  o I>0, t~/>0}. Also l e t v  ~  a = + o o .  

Iteration 1 
Step 1 : We have f rom (24) o-(a ~ = 10, o-(a 1) = O. Since a ~ and a 1 are vectors of  
the basis of the space spanned by K* and by (7) 4 ~ - o.(aO) a0 - -  ~ a0 , 4 1  - -  o . (a l )  a l  - -  al~ it 

follows that  t(4 ~ --(0.1,  0), t(4 a) = (0, oo) i.e. point at infinity in the direction 
(0, 1)). Solving 

(LP(So, Mo) ) max/~o -~/~1 
s . t . h ,  t(4 ~ + AI" t(41) ~<0.6 

A 0 , h l ~ O  

yields A* = (6, O) i.e. ~(Mo) = 6 and og(M0) = ~-o ~ , i.e. t(o9 ~ = (0.6, 0). We do not  
need  to compute  fi(Mo) because it is the only cone at this stage. 

Step 2: ~o = {Mo}- 
_ ~o = 4 o  C * .  Step 3: We have f rom (25) p(o9~ hence ~(o9~ T E Also f rom 

(23) f (4  ~ = 3.5. Therefore ,  the incumbent  is 61 = 4 ~ ~o = N with a I = f (61 )  = 3.5. 
Since p(ogo) > 1 and the vector ti ~ such that  if0 + u o solves (25) for v = o9o is (0, 3, 
- 2 . 5 ,  0) we define the new S~ by adding the following constraint to S O (note that  
(a  o, fro) = 10, (a 1, t~ ~ = -15) :  

10t o - 15t I ~< 1.  

Step 4: Split M o upon o9o =�89 + a 1) with t(o9 ~ = (0.5, 0.5). ~ 1  
where  Moi contains the vector a i, i = 0, 1. 

= {Moo, Mol}, 

Iteration 2 
Step 1 : We have f rom (24) o-(ogo) = 3 hence d~ ~ = 8 o -xo9 �9 Solving LP(S l ,  MoO for 
i = 0, 1 yields /x(Mox ) < 1, /z(Moo ) = 2.15 > 1 and og(Moo ) = 0.4a ~ + 0.2a 1, i.e. 
t(og(Moo)) = (0.4, 0.2). We do not  need to compute fi(Moo ). 
Step 2 :~1  = {Moo}. 
Step 3: M s =Moo is chosen. We have o91= og(Moo), s o  t(o91) : (0.4, 0.2). Since 
f rom (25) p(o91) = 1, i.e. o91 E C*, we let $2 = $1. Since f(o91) = 3.5 the incumbent  
is unchanged and 62 = 62 = 4 ~ a 2 = a I = 3.5. 
Step 4: Split M 1 upon o91. ~ 2  = (Mlo, Mxl), where Mli is the cone that  contains 
a 0" 

Iteration 3 
Step 1: We have f rom (24) o-(o91) = 1, i.e. & l  =o91. Solving LP(S2,Mxi  ) for 
i =  0, 1 yields /x(Mlo ) =/x(M11 ) = 1. Comput ing /3(Mli ) by formula (14) we get 
/~(Mlo) = /~(Ml l )  = f(o91) = 3.5. 
Step 2: Since ~(Mlo)=fi(Mxl)=a2, ~ 2 = ~ .  Hence  the optimal value of 
(QCM1),  i.e. (Q),  is 3.5. Noting that  the vector ~ that  solves (25) for 6 = d ~ (or 
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0=(.O1)) is t~=(0, 3, 0, 0) we thus conclude that an (exact) global optimal 
solution of (P) is 

X 1 = 0 ,  X 2 = 3, y~ =0 ,  Y2 = 0  

with objective function value 3.5 + 2.5 = 6. 

This optimal solution has already been obtained in the second iteration, but one 
more iteration was needed to recognize it as such. 

Computational results with this algorithm as Well as comparisons with the 
algorithm presented in [30], will be discussed in a subsequent paper. 

Appendix A 

In this appendix we will show that the assumption ~p(x) /s continuous does not 
restrict the generality. 

Consider problem R(x), m i n { d T y : - B 2 y  >I A 2 x -  g2, Y >>" 0}, where ~p(x) is the 
optimal value of R(x). The dual of R(x) is 

[RD] m a x { ( A 2 x - g 2 , t ) ' - B ~ t < - d 2 , t ~ > 0 } .  

If R(x) is infeasible for some x, ~p(x) = +o% hence ~p(x) is not continuous and the 
dual (RD) will be unbounded. 

Let M 0 be any number such that V M  >>-Mo, the set 

{ t : O ~ t < - M }  (1) 

contains all the vertices of 

{ - B T t < ~ d 2 , t > t O )  . (2) 

Such an M can always be found, see Papadimitriou and Steiglitz [25]. If the set of 
constraints (1) is added to the dual, the objective function value of (RD) is 
bounded and the corresponding primal problem is modified to 

~M(x) = min{dzry + M z  : BzY - z <~g2 - A2x ,  Y, z >I 0} , 

where z is the multipliers corresponding to the constraints (1). If q~(x) < +~  the 
optimal value of the dual must be achieved at a vertex of (2), hence q~(x) = q~M(x). 
Therefore, the problem will not change if we replace q~(x) by ~PM(X) and this 
conclusion ends this appendix. 
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